Abstract
The reaction mechanism for the synthesis of 1,3,4-oxadiazole-2(3 H)-ones from hydrazonyl chloride and CO2 in the presence of CsF/18-crown-6 and toluene, is revisited via density functional theory computations. Although this reaction was earlier classified as a 1,3-dipolar cycloaddition, we found some competing pathways involved therein. The mechanisms including the (F-CO2)- anion and the nitrile imine intermediate are some options. The dimerization of nitrile imine is another competing mechanism in this reaction. Our results show that the most favorable mechanism proceeds via a stepwise pathway without involving any nitrile imine intermediate or the (F-CO2)- anion. The F- anion, resulting from the formation of a complex between 18-crown-6 and Cs+ cation, deprotonates the nitrile imine precursor easily, which acts then as a nucleophilic anion, enhancing the reactivity of CO2 toward it. The mechanism for the reaction with COS, an isoelectronic analogue of CO2, is also explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.