Abstract

Abstract Based on a viscoelastic earthquake-cycle deformation model, we revisit the fault locking of the central Himalayan thrust using geodetic data acquired in the past three decades. By incorporating the viscoelastic relaxation effect induced by stress buildup and release, our viscoelastic model is capable of explaining the far-field observation with similar fault locking width obtained in previous studies. Elastic models underestimate the far-field deformation and consequently underestimate the fault slip rate by attributing the far-field deformation to stable intraplate deformation. A steady-state viscosity of ∼1019 Pa·s is required for the lower crust beneath south Tibet to best fit the crustal velocity. The optimal slip rate and locking width of the central Main Himalayan Thrust are estimated to 18.8 ± 1.6 mm/a and 85 ± 2.1 km, respectively. The inferred fault locking width, along with the down-dip rupture extension of the 2015 Gorkha earthquake, agrees well with the identified mid-crustal ramp, which leads to an interpretation that the fault geometry of the central Himalayan thrust plays an important role on fault kinematics. Our results highlight that viscoelastic relaxation during the earthquake cycle should be incorporated for robust estimation of fault locking parameters and reasonable data fitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.