Abstract
Prefabrication has long been recognized as a green production technology to minimize construction's adverse environmental impacts such as waste, noise, dust, and air pollution. Previous studies reported the effects of prefabrication on construction waste minimization. However, these studies relied primarily on small data obtained by ethnographic methods such as interviews and questionnaire surveys. Research to evaluate the effects using bigger, more objective quantitative data is highly desired. This research aims to re-evaluate the effects of prefabrication on construction waste minimization by exploiting a quantitative dataset stemmed from 114 sizable high-rise building projects in Hong Kong. It was discovered that the average waste generation rates of conventional and prefabrication building projects were 0.91 and 0.77 ton/m² respectively. Compared with conventional construction, prefabrication logged a 15.38% waste reduction. Further probing into specific prefabricated components adopted in the samples, it is discovered that precast windows and walls are more conducive to waste minimization. This is coincident with the fact that these components are also widely adopted in the sample buildings. This study reconfirms the positive effects of prefabrication on waste minimization and articulates that two types of prefabricated components play relatively bigger role in minimizing construction waste. The strengths of this study lie in its statistical analyses of a valuable and objective quantitative dataset measuring prefabrication and waste generation rates. Future studies are recommended to prove the corollary - it is not what category of prefabricated component, but the actual proportion of prefabrication in the total construction volume that matters to waste minimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.