Abstract
This work describes the practical implementation of the method for digital noise suppression during processing images containing ice information to recognize automatically the contours of «ice-water» objects during aerial photography. Images containing ice information have special characteristic structural features related to noise, e.g.granularity, glare, ice crumbs. This makes difficult or even impossible to recognize automatically the contours of ice-water objects. It is known that the success of the application of edge recognition methods depends on how much image noise is reduced. The paper discusses the construction method for the management of noise. The method is based on the sequential application of the Haar wavelet transform denoising using thresholding, clustering by k-means method. For the subsequent automatic construction of ice floes contours the Sobel operator is applied.The aim of the work is to develop a method capable to process digital images effectively that contain ice information with strong digital noise. In this work we treated the images of one-year ice containing strong digital image noise in the form of granularity and in the form of ice crumbs. A description of the features of each of the steps of the proposed method and practical application is given.As a result, the method was developed for processing images of ice information containing digital noise in absolute value commensurate with the basic data. It was noted that the use of the k-means method expands the scope. The k-rare method allows more detailed processing of ice information and distinguishes not only the contours of ice-water objects, but also the contours of ice crumbs.The conclusion formulates the main advantages of the method and the possible application of the algorithm in the process of local exploration of the ice conditions of the Northern Sea Route channel using unmanned aerial vehicle for aerial photography. The usage of unmanned aerial vehicle for aerial photography will increase the frequency of weather forecast updates and predict the appearance of ice objects at the ship’s heading. That will allow us to select the safest and most economical efficient route along the Northern Sea Route.The authors have no competing interests.
Highlights
This work describes the practical implementation of the method for digital noise suppression during processing images containing ice information to recognize automatically the contours of «ice-water» objects during aerial photography
It is known that the success of the application of edge recognition methods depends on how much image noise is reduced
The method is based on the sequential application of the Haar wavelet transform denoising using thresholding, clustering by k-means method
Summary
К ВОПРОСУ О ПОДАВЛЕНИИ ЦИФРОВОГО ШУМА ПРИ АВТОМАТИЧЕСКОМ ПОСТРОЕНИИ КОНТУРОВ ОБЪЕКТОВ. Настоящая работа посвящена практической реализации метода подавления цифрового шума при обработке изображений, содержащих ледовую информацию. Это затрудняет или делает невозможным автоматическое распознавание контуров объектов «лед – вода». В работе предлагается метод подавления цифрового шума для автоматического распознавании контуров объектов «лед – вода» в процессе аэрофотосъемки. Для последующего автоматического построения контуров объектов «лед – вода» применяется оператор Собеля. В заключении статьи сформулированы основные достоинства метода и возможное применение алгоритма в процессе локальной доразведки ледовой обстановки фарватера Северного морского пути при использовании беспилотных летательных аппаратов для аэрофотосъемки. К вопросу о подавлении цифрового шума при автоматическом построении контуров объектов «лед – вода» при обработке ледовой информации // Проблемы Арктики и Антарктики.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.