Abstract

Abstract This study uses an atmospheric general circulation model to examine the relative effects of Maritime Continent (MC) orography, surface roughness, and land–sea contrast on the three cross-equatorial flows (CEF) north of Australia, including the South China Sea (SCS), Celebes-Moluccas (CM), and New Guinea (NG) CEFs, and Asian monsoon precipitation during boreal summer. Four experiments are conducted: with islands, with islands without orography, with islands with ocean roughness and no orography, and with ocean only in the MC region. At the approximately 1° horizontal resolution of these sensitivity experiments, results indicate that the land–sea contrast and orography in the MC have complicated impacts on the CEFs. The land–sea contrast creates the three CEFs. The orography is dominant in deepening, concentrating, and strengthening the CM CEF and modulating the longitudinal location of the NG CEF. For the intensity and depth of the SCS and NG CEFs, the surface roughness over the flat MC and orography are both important. In addition, the MC modulates the monsoon rainfall in tropical Asia. The decreased rainfall (by roughly 57% and 21.4% over South Asia and the SCS, respectively) is dominated by the reduced moisture availability resulting from the presence of the land–sea contrast, thereby intercepting the westward propagating quasi-biweekly convection. The surface roughness over the MC is key in reducing precipitation through reducing moisture convergence over Sumatra, Borneo, and northeastern New Guinea. However, the orography controls the intense precipitation over southwestern New Guinea and the adjacent seas through enhancing the moisture transport carried by the CM and NG CEFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call