Abstract

Biological and engineering applications of superhydrophobic surfaces are limited by the stability of the wetting state determined by the transition from the Cassie-Baxter state to the Wenzel state (C-W transition). In this paper, we performed water droplet squeeze tests to investigate the critical conditions for the C-W transition for solid surfaces with periodic micropillar arrays. The experimental results indicate that the critical transition pressures for the samples with varying micropillar dimensions are all significantly higher than the theoretical predictions. Through independent measurements, we attributed the disparity to the incorrect assessment of the contact angle on the sidewall surfaces of the micropillars. We also showed that the theoretical models are still applicable when the correct contact angle of the sidewall surfaces is adopted. Our work directly validates and improves the theoretical models regarding the C-W transition and suggests a potential route of tuning superhydrophobicity using finer scale surface features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.