Abstract
The Stokes-Einstein (SE) relation has been considered as one of the hallmarks of dynamics in liquids. It describes that the diffusion constant D is proportional to ( τ / T )–1, where τ is the structural relaxation time and T is the temperature. In many glass-forming liquids, the breakdown of SE relation often occurred when the dynamics of the liquids becomes glassy, and its origin is still debated among many scientists. Using molecular dynamics simulations and support-vector machine method, it is found that the scaling between diffusion and relaxation fails when the total population of solid-like clusters shrinks at the maximal rate with decreasing temperature, which implies a dramatic unification of clusters into an extensive dominant one occurs at the time of breakdown of the SE relation. Our data leads to an interpretation that the SE violation in metallic glass-forming liquids can be attributed to a specific change in the atomic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.