Abstract
We undertake the correlation dimension analysis of hyperchaotic time series using the box counting algorithm. We show that the conventional box counting scheme is inadequate for the accurate computation of correlation dimension ( D 2) of a hyperchaotic attractor and propose a modified scheme which is automated and gives better convergence of D 2 with respect to the number of data points. The scheme is first tested using the time series from standard chaotic systems, pure noise and data added with noise. It is then applied on the time series from three standard hyperchaotic systems for computing D 2. Our analysis clearly reveals that a second scaling region appears at lower values of box size as the system makes a transition into the hyperchaotic phase. This, in turn, suggests that correlation dimension analysis can also give information regarding chaos-hyperchaos transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.