Abstract

Abstract We calculate the S-factor for proton–proton fusion using chiral effective field theory interactions and currents. By performing order-by-order calculations with a variety of chiral interactions that are regularized and calibrated in different ways, we assess the uncertainty in the S-factor from the truncation of the effective field theory expansion and from the sensitivity of the S-factor to the short-distance axial current determined from three- and four-nucleon observables. We find that S(0) = (4.100 ± 0.024(syst) ± 0.013(stat) ± 0.008(g A )) × 10−23 MeV fm2, where the three uncertainties arise, respectively, from the truncation of the effective field theory expansion, use of the two-nucleon axial current fit to few-nucleon observables and variation of the axial coupling constant within the recommended range. The increased value of S(0) compared to previous calculations is mainly driven by an increase in the recommended value for the axial coupling constant and is in agreement with a recent analysis based on pionless effective field theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.