Abstract

We revisit the Frank-Wolfe (FW) optimization under strongly convex constraint sets. We provide a faster convergence rate for FW without line search, showing that a previously overlooked variant of FW is indeed faster than the standard variant. With line search, we show that FW can converge to the global optimum, even for smooth functions that are not convex, but are quasi-convex and locally-Lipschitz. We also show that, for the general case of (smooth) non-convex functions, FW with line search converges with high probability to a stationary point at a rate of O(1/t), as long as the constraint set is strongly convex—one of the fastest convergence rates in non-convex optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.