Abstract
We give a new self-contained proof of Poincaré’s Polyhedron Theorem on presentations of discontinuous groups of isometries of a Riemann manifold of constant curvature. The proof is not based on the theory of covering spaces, but only makes use of basic geometric concepts. In a sense one hence obtains a proof that is of a more constructive nature than most known proofs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.