Abstract

We review the analytical expressions for the complex Poynting’s vector in the case of arbitrary plane-waves in a lossy isotropic medium. We demonstrate how these expressions can be used to recover the optical absorption power density Q, considering the divergence of the time-averaged Poynting vector. This quantity, proportional to the imaginary part of the dielectric function and the field intensity, i.e. Q∝|E|2ɛ”, is usually established for harmonic fields, using the Poynting’s identity. The derivation from the complex Poynting vector expression is more direct for TE-polarized homogeneous waves, but the derivation encompasses the other cases like inhomogeneous TM plane waves. As an application, the optical absorption profile Q(x) within 1D multilayers is detailed using matrix transfer method for both TE and TM plane waves, including the evanescent case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.