Abstract

The fall velocities of rain and drizzle drops are often assumed to be a deterministic function of their size. These diameter-fall speed relationships are intrinsically assumed in the retrievals provided by some commercial rain measurement instruments (e.g. the Joss-Waldvogel Disdrometer (Distromet), Micro Rain Radar (METEK), and 1-Dimensional Video Disdrometer (Joanneum Research)). Some disdrometers are capable of independently measuring droplet size and fall-speed and provide evidence that not all drops adhere to the assumed size/fall-speed relationship. The ubiquity and magnitude of these deviations are still an area of some debate; clear identification of drizzle and rain drops falling at speeds different than their expected terminal fall velocities is muddied by conservative estimates of disdrometer resolution and performance. For a long time the bulk of observed non-terminal drop fall speeds were assumed to be instrumental artifacts and, even now, most investigators conclude drops falling at non-terminal speeds do not have a large impact on rain measurement science. To date, uncertainties in disdrometer-derived drop sizes and fall speeds have usually been derived from the manufacturer estimates. Here, we improve on these estimates by using a field calibration source (the new ``Large Drop Generator'' from Mesa Photonics) that permits user-selectable generation of droplets with known sizes and fall speeds. From these data, empirical estimates of disdrometer sizing and fall velocity bias and uncertainty can be determined. This, then, allows for a more reliable estimate of the fraction of non-terminal drops in natural rain and a more reliable assessment of the impact of non-terminal drizzle and rain drops in data derived from instruments that assume a specific drop size/fall-speed relationship.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call