Abstract

In [6,7], Dwork et al. posed the fundamental question of existence of commitment schemes that are secure against selective opening attacks (SOA, for short). In [2] Bellare, Hofheinz, and Yilek, and Hofheinz in [13] answered it affirmatively by presenting a scheme which is based solely on the non-black-box use of a one-way permutation needing a super-constant number of rounds. This result however opened other challenging questions about achieving a better round complexity and obtaining fully black-box schemes using underlying primitives and code of the adversary in a black-box manner. Recently, in TCC 2011, Xiao ([23]) investigated on how to achieve (nearly) optimal SOA-secure commitment schemes where optimality is in the sense of both the round complexity and the black-box use of cryptographic primitives. The work of Xiao focuses on a simulation-based security notion of SOA. Moreover, the various results in [23] focus only on either parallel or concurrent SOA. In this work we first point out various issues in the claims of [23] that actually re-open several of the questions left open in [2,13]. Then, we provide new lower bounds and concrete constructions that produce a very different state-of-the-art compared to the one claimed in [23].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.