Abstract
The Kepler orbits form a 3-parameter family of unparametrized plane curves, consisting of all conics sharing a focus at a fixed point. We study the geometry and symmetry properties of this family, as well as natural 2-parameter subfamilies, such as those of fixed energy or angular momentum. Our main result is that Kepler orbits is a ‘flat’ family, that is, the local diffeomorphisms of the plane preserving this family form a 7-dimensional local group, the maximum dimension possible for the symmetry group of a 3-parameter family of plane curves. These symmetries are different from the well-studied ‘hidden’ symmetries of the Kepler problem, acting on energy levels in the 4-dimensional phase space of the Kepler system. Each 2-parameter subfamily of Kepler orbits with fixed non-zero energy (Kepler ellipses or hyperbolas with fixed length of major axis) admits \(\mathrm { PSL}_2(\mathbb {R})\) as its (local) symmetry group, corresponding to one of the items of a classification due to Tresse (Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre \(y^{\prime \prime }= \omega (x, y, y^{\prime })\), vol. 32, S. Hirzel, 1896) of 2-parameter families of plane curves admitting a 3-dimensional local group of symmetries. The 2-parameter subfamilies with zero energy (Kepler parabolas) or fixed non-zero angular momentum are flat (locally diffeomorphic to the family of straight lines). These results can be proved using techniques developed in the nineteenth century by Lie to determine ‘infinitesimal point symmetries’ of ODEs, but our proofs are much simpler, using a projective geometric model for the Kepler orbits (plane sections of a cone in projective 3-space). In this projective model, all symmetry groups act globally. Another advantage of the projective model is a duality between Kepler’s plane and Minkowski’s 3-space parametrizing the space of Kepler orbits. We use this duality to deduce several results on the Kepler system, old and new.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.