Abstract

In this paper, we revisit the classical stochastic jump-diffusion process and develop an effective variant for estimating visibility statuses of objects while tracking them in videos. Dealing with partial or full occlusions is a long standing problem in computer vision but largely remains unsolved. In this paper, we cast the above problem as a Markov decision process and develop a policy-based jump-diffusion method to jointly track object locations in videos and estimate their visibility statuses. Our method employs a set of jump dynamics to change visibility statuses of objects and a set of diffusion dynamics to track objects in videos. Different from the traditional jump-diffusion process that stochastically generates dynamics, we utilize deep policy functions to determine the best dynamic for the present state and learn the optimal policies using reinforcement learning methods. Our method is capable of tracking objects with full or partial occlusions in crowded scenes. We evaluate the proposed method over challenging video sequences and compare it to alternative tracking methods. Significant improvements are made particularly for videos with frequent interactions or occlusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.