Abstract
Abstract Hydrotalcite materials (HTs) were synthesized by a facile and swift combined mechanochemistry/coprecipitation approach, and their catalytic activity was evaluated and compared with conventionally synthesized hydrotalcites (co-precipitation method) in the Knoevenagel condensation between furfural and ethyl cyanoacetate/malononitrile. Characterization and catalytic activity results clearly demonstrate that the proposed combined mechanochemical/coprecipitation approach provides an improvement in crystallinity, morphology, tunable basicity, and textural properties (higher surface area and enhanced surface properties) as compared to HTs obtained via conventional coprecipitation methods. In addition, mechanochemically synthesized HTs largely improve catalytic activities, including conversion and product selectivity to Knoevenagel condensation products under solventless conditions, short reaction times, or reaction at room temperature as compared to conventional counterparts (e.g., 30–40 vs > 99% product yields).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.