Abstract

The complexity of microvascular circulation has led to the development of advanced imaging techniques and biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an in vitro model of microvasculature to replicate important geometric and functional features of in vivo perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O2) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal optical imaging (ISOI) to visualize full-field blood flow distributions and blood O2 profiles. By closely reproducing in vivo blood perfusion and oxygenation conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O2 transport parameters that are not directly measurable in traditional animal studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call