Abstract

The type and distribution of oxygen functional groups in graphene oxide (GO) and reduced graphene oxide (RGO) remain still a subject of great debate. Local analytic techniques are required to access the chemistry of these materials at a nanometric scale. Electron energy loss spectroscopy in a scanning transmission electron microscope can provide the suitable resolution, but GO and RGO are extremely sensitive to electron irradiation. In this work we employ a dedicated experimental setup to reduce electron illumination below damage limit. GO oxygen maps obtained at a few nanometers scale show separated domains with different oxidation levels. The C/O ratio varies from about 4:1 to 1:1, the latter corresponding to a complete functionalization of the graphene flakes. In RGO the residual oxygen concentrates mostly in regions few tens nanometers wide. Specific energy-loss near-edge structures are observed for different oxidation levels. By combining these findings with first-principles simulations we propose a model for the highly oxidized domains where graphene is fully functionalized by hydroxyl groups forming a 2D-sp$^3$ carbon network analogous to that of graphane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call