Abstract

In recent years, face detection has emerged as a prominent research field within Computer Vision (CV) and Deep Learning. Detecting faces in images and video sequences remains a challenging task due to various factors such as pose variation, varying illumination, occlusion, and scale differences. Despite the development of numerous face detection algorithms in deep learning, the Viola-Jones algorithm, with its simple yet effective approach, continues to be widely used in real-time camera applications. The conventional Viola-Jones algorithm employs AdaBoost for classifying faces in images and videos. The challenge lies in working with cluttered real-time facial images. AdaBoost needs to search through all possible thresholds for all samples to find the minimum training error when receiving features from Haar-like detectors. Therefore, this exhaustive search consumes significant time to discover the best threshold values and optimize feature selection to build an efficient classifier for face detection. In this paper, we propose enhancing the conventional Viola-Jones algorithm by incorporating Particle Swarm Optimization (PSO) to improve its predictive accuracy, particularly in complex face images. We leverage PSO in two key areas within the Viola-Jones framework. Firstly, PSO is employed to dynamically select optimal threshold values for feature selection, thereby improving computational efficiency. Secondly, we adapt the feature selection process using AdaBoost within the Viola-Jones algorithm, integrating PSO to identify the most discriminative features for constructing a robust classifier. Our approach significantly reduces the feature selection process time and search complexity compared to the traditional algorithm, particularly in challenging environments. We evaluated our proposed method on a comprehensive face detection benchmark dataset, achieving impressive results, including an average true positive rate of 98.73% and a 2.1% higher average prediction accuracy when compared against both the conventional Viola-Jones approach and contemporary state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.