Abstract

Abstract The orbital decay of a perturber within a larger system plays a key role in the dynamics of many astrophysical systems—from nuclear star clusters or globular clusters in galaxies, to massive black holes in galactic nuclei, to dwarf galaxy satellites within the dark matter halos of more massive galaxies. For many decades, there have been various attempts to determine the underlying physics and timescales of the drag mechanism, ranging from the local dynamical friction approach to descriptions based on the back-reaction of global modes induced in the background system. We present ultra-high-resolution N-body simulations of massive satellites orbiting a Milky Way-like galaxy (with > 108 particles), that appear to capture both the local “wake” and the global “mode” induced in the primary halo. We address directly the mechanism of orbital decay from the combined action of local and global perturbations and specifically analyze where the bulk of the torque originates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.