Abstract

The stability of parasite populations is regulated by density-dependent processes occurring at different stages of their life cycle. In dioecious helminth infections, density-dependent fecundity is one such regulatory process that describes the reduction in egg production by female worms in high worm burden within-host environments. In human schistosomiasis, the operation of density-dependent fecundity is equivocal and investigation is hampered by the inaccessibility of adult worms that are located intravascularly. Current understanding is almost exclusively limited to data collected from two human autopsy studies conducted over 40 years ago, with subsequent analyses having reached conflicting conclusions. Whether egg production is regulated in a density-dependent manner is key to predicting the effectiveness of interventions targeting the elimination of schistosomiasis and to the interpretation of parasitological data collected during monitoring and evaluation activities. Here, we revisit density-dependent fecundity in the two most globally important human Schistosoma spp. using a statistical modelling approach that combines molecular inference on the number of parents/adult worms in individual human hosts with parasitological egg count data from mainland Tanzania and Zanzibar. We find a non-proportional relationship between S. haematobium egg counts and inferred numbers of female worms, providing the first clear evidence of density-dependent fecundity in this schistosome species. We do not find robust evidence for density-dependent fecundity in S. mansoni because of high sensitivity to some modelling assumptions and the lower statistical power of the available data. We discuss the strengths and limitations of our model-based analytical approach and its potential for improving our understanding of density dependence in schistosomiasis and other human helminthiases earmarked for elimination.

Highlights

  • Schistosomiasis is a devastating neglected tropical disease (NTD) caused by trematode parasites, currently estimated to infect at least 220 million people, 90% of whom live in sub-Saharan Africa (SSA) [1, 2]

  • We analysed egg count and miracidial genotypic data derived from two epidemiological studies: one conducted in Zanzibar as part of the ‘Zanzibar Elimination of Schistosomiasis Transmission’ (ZEST) alliance and the ‘Schistosomiasis Consortium for Operational Research and Evaluation’ (SCORE) [31, 39] and the other conducted in mainland Tanzania, as part of Schistosomiasis Control Initiative (SCI) activities [7, 31]

  • For S. haematobium, we found that point estimates of the density-dependent coefficient and their associated upper 95% confidence limits are consistently less than 1 for a range of values for Nmax, indicating density-dependent fecundity (Fig 2)

Read more

Summary

Introduction

Schistosomiasis is a devastating neglected tropical disease (NTD) caused by trematode parasites, currently estimated to infect at least 220 million people, 90% of whom live in sub-Saharan Africa (SSA) [1, 2]. Schistosomiasis is the second most important parasitic disease, after malaria, in terms of socioeconomic impact [6]. The initial success of MDA led the WHO to set ambitious goals for the control of schistosomiasis by 2020 [9], and its elimination as a public health problem in all endemic countries by 2030 [10]. Whilst the feasibility of reaching these goals will be heterogeneous among schistosomiasis foci and will be challenging where transmission is intense [11], elucidating the basic biology and fitness strategies available to these parasites will be critical in terms of predicting and evaluating MDA impact and, if necessary, modifying strategies

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call