Abstract

A new synthesis of the fused macropolyhedral boron cluster B20H16 is described and its molecular structure in solution discussed, based on multi-nuclear NMR spectra, including COSY measurements, in relation to its previously elucidated solid-state structure. To verify the conclusions from the NMR study, experimentally determined chemical shifts are compared with calculated values at the GIAO-B3LYP level with a TZP basis set by Huzinaga. There is a very good agreement between the experimental and computed δ(11B) values, suggesting that the MP2/6-31G* internal coordinates are a reasonable representation of the molecular geometry of this twenty-vertex cluster in solution that is essentially the same as its solid-state structure. A computational analysis of the FMO orbitals of B20H16, in particular of the LUMO, reveals that the four naked boron atoms, common for two shared icosahedral subclusters, are the reactive sites of this D2d-symmetrical molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.