Abstract

BackgroundArgument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes.ResultsWe explored 196 high quality transcriptomic datasets from five bird species to reconstruct transcripts for the purpose of discovering potential hidden genes in the avian genomes. We constructed a relatively complete and high-quality bird transcript database (1,623,045 transcripts after quality control in five birds) from a large amount of avian transcriptomic data, and found most of the presumed missing genes (83.2%) could be recovered in at least one bird species. Most of these genes have been identified for the first time in birds. Our results demonstrate that 67.94% genes have GC content over 50%, while 2.91% genes are AT-rich (AT% > 60%). In our results, 239 (53.59%) genes had a tissue-specific expression index of more than 0.9 in chicken. The missing genes also have lower Ka/Ks values than average (genome-wide: Ka/Ks = 0.99; missing gene: Ka/Ks = 0.90; t-test = 1.25E-14). Among all presumed missing genes, there were 135 for which we did not find any meaningful orthologues in any of the 5 species studied.ConclusionInsufficient reference genome quality is the major reason for wrongly inferring missing genes in birds. Those presumably missing genes often have a very strong tissue-specific expression pattern. We show multi-tissue transcriptomic data from various species are necessary for inferring gene family evolution for species with only draft reference genomes.

Highlights

  • Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation

  • We demonstrate that de novo assembly of multiple transcriptomes from various tissues can rescue most missing genes in the absence of complete reference genomes, and most presumed missing genes have a strong tissue-specific expression pattern

  • We found that the average GC content of these missing genes is higher than other annotated coding genes, not reaching an extreme level

Read more

Summary

Introduction

Argument remains as to whether birds have lost genes compared with mammals and non-avian vertebrates during speciation. High quality-reference gene sets are necessary for precisely evaluating gene gain and loss. It is essential to explore new reference transcripts from large-scale de novo assembled transcriptomes to recover the potential hidden genes in avian genomes. High-quality genomes are an essential prerequisite for inferring gene gain and loss at the genome-wide scale. Searches for several genes that have been shown to be important in mammals but were considered to be lost in the chicken, have discovered full length cDNAs for these genes [6, 9, 10]. As more genes are recovered, a recent study concluded that avian genomes contain similar numbers of genes to mammals and non-avian reptiles [7]. Different studies have shown that recovering genes through transcriptome assembly methods is an effective method that can compensate for the impact of poor genome quality

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.