Abstract

Optical functions (n and k) of cosmic dust species like forsterite (Mg2SiO4) are required at all wavelengths to quantify the temperature and amount of dust. Astronomers combine optical functions of forsterite and olivine in different ways, which will affect radiative transfer models. We investigated what recent updates to the ultraviolet-visible-near-infrared (UV-VIS-NIR) laboratory spectra of forsterite and the choice of forsterite n, k dataset will have on radiative transfer models. We measured the UV-VIS-NIR transmission spectra of synthetic forsterite, MgO, SiO2, olivine (Fo90), and meteoritic olivine (pallasite). We derived optical functions for these and compared the UV-IR behavior of our k, absorption cross-section 〈Cabs〉, and total flux to that of “astronomical silicate” and olivine. Laboratory-derived k is substantially lower than “astronomical silicate” k at λ ~ 0.2–5 µ m. In the IR, different laboratory n and k produce equivocal 〈Cabs〉, whereas total flux is different for “astronomical silicate” versus laboratory n, k. From 0.35–5 µ m, the choice of “forsterite” k values has the most effect on modeled quantities. For environments with significant UV flux, astronomers should use recent UV-VIS-NIR laboratory n, k.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call