Abstract

The diffusion of gases confined in nanoporous materials underpins membrane and adsorption-based gas separations, yet relatively few measurements of diffusion coefficients in the promising class of materials, metal–organic frameworks (MOFs), have been reported to date. Recently we reported self-diffusion coefficients for 13CO2 in the MOF Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) which has one-dimensional channels with a diameter of approximately 2 nm [Forse, A. C.; J. Am. Chem. Soc. 2018, 140, 1663−1673]. By analyzing the evolution of the residual 13C chemical shift anisotropy line shape at different gradient strengths, we obtained self-diffusion coefficients both along (D∥) and between (D⊥) the one-dimensional MOF channels. The observation of nonzero D⊥ was unexpected based on the single crystal X-ray diffraction structure and flexible lattice molecular dynamics simulations, and we proposed that structural defects may be responsible for self-diffusion between the MOF channels. Here ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call