Abstract

To obtain thorough understandings of precipitation process in heat-treatable Mg-Ca-Zn alloy, we revisited the precipitation process of a Mg-0.3Ca-0.6 Zn (at.%) dilute alloy during isothermal aging at 200 °C using an aberration-corrected scanning transmission electron microscope, atom probe tomography, and first-principles calculations. The monolayer G.P. zones form on the (0002)α plane in the peak-aged condition and transform into tri-atomic layer η'' and η' plates with a thickness of a single unit-cell height. The η' plates, then, form in pairs and stacks with energetically favorable 4–5 atomic layers of pure magnesium between the plates. While such a transformation path is similar to that seen in Mg-RE-Zn alloys (RE: rare-earth elements), the unique structure of coarse η1 plates that precipitate after the η' plates leads to a different precipitate microstructure evolution from the Mg-RE-Zn system. The η1 phase (Mg7Ca2Zn3) is unevenly distributed in the matrix after 100 h of aging and finally evolves to the equilibrium η phase (Mg10Ca3Zn6) phase with a hexagonal structure. First-principles calculations of energetics were performed to further identify the crystal structure and stability of the precipitates, supporting the following new precipitation sequence:S.S.S.S. → G.P. zones → η'' → η' → η' pairs and stacks / η1 → η

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call