Abstract

The plant metabolite picrotoxinin (PXN) is a widely used tool in neuroscience for the identification of GABAergic signaling. Its hydrolysis in weakly alkaline media has been observed for over a century and the structure of the unstable hydrolysis intermediate was assigned by analogy to the degradation product picrotoxic acid. Here we show this assignment to be in error and we revise the structure of the hydrolysis product by spectroscopic characterization in situ. Counterintuitively, hydrolysis occurs at a lactone that remains closed in the major isolable degradation product, which accounts for the longstanding mistake in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.