Abstract

Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good hypoxia-selectivity. The preparation, isolation, structure characterization, and screening for anticancer activity of the first representatives of 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides have been described. A series of 7- and 6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides was synthesized by the Beirut reaction. The cytotoxicity was assessed by MTT test (72 h incubation) in normoxia (21% O2) and hypoxia (1% O2) conditions. We found that during the Beirut reaction between a benzofuroxan bearing an electron withdrawing group and benzoylacetonitrile in the presence of triethylamine, in addition to well-known 7-substituted quinoxaline-2-carbonitrile 1,4-dioxides 7-11a, the 6-isomers 7-11b are formed. Moreover, the yield of the 6- isomers increased with the increase in the electron-withdrawing character of the substituent. For benzofuroxans with CO2Me and CF3 groups, 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides 10-11b were the major products. Despite similarities in physicochemical and spectroscopic properties, the obtained isomers exhibit considerable differences in their anticancer activity and hypoxia selectivity. Substituents and their electronic effects play a key role in the formation of 7- and 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides in the Beirut reaction and in the cytotoxicity properties of the obtained isomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call