Abstract

The occurrence of tephra horizons in basins adjacent to volcanic arcs provide an excellent opportunity for establishing a reliable chronostratigraphic framework for detailed sedimentological studies. In this study, three widespread and stratigraphically important rhyolitic tephra horizons interbedded in Plio/Pleistocene strata of the Wanganui Basin, New Zealand, are dated by application of the isothermal plateau fission-track (ITPFT) technique to hydrated glass shards. All glass samples were corrected for annealing and consequently yield reliable ages. Rangitawa Tephra yielded statistically indistinguishable ages from three localities that are in excellent agreement with recently determined zircon fission-track age estimates of ca. 0.35 Ma. ITPFT ages of 1.05 ± 0.05 and 1.63 ± 0.15 Ma for Potaka Pumice and Pakihikura Pumice, respectively, are considerably older than previous FT estimates but consistent with new magnetostratigraphic data that places the Potaka within the Jaramillo Subchron, and Pakihikura within the Matuyama Chron between the Cobb Mountain and Olduvai Subchrons. Combining our fission-track ages with the magnetostratigraphy, the true age of sediments within the Wanganui Basin is found to be significantly underestimated. Sedimentation rates of between ca. 680-630 m/Ma from 1.63 Ma to 0.35 Ma are calculated in the eastern part of the basin and are much lower than those calculated using the previous FT chronology. This new ITPFT-age data demonstrates that the existing Plio/Pleistocene marine chronology in New Zealand will require age revision and has important implications when considering the evolution of several other sedimentary basins in southern North Island that contain the same ITPFT-dated tephra horizons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call