Abstract

This article describes a revised version 56A6(CARBO_R) of the GROMOS 56A6(CARBO) force field for hexopyranose-based carbohydrates. The simulated properties of unfunctionalized hexopyranoses are unaltered with respect to 56A6CARBO . In the context of both O1 -alkylated hexopyranoses and oligosaccharides, the revision stabilizes the regular (4) C1 chair for α-anomers, with the opposite effect for β-anomers. As a result, spurious ring inversions observed in α(1→4)-linked chains when using the original 56A6(CARBO) force field are alleviated. The (4) C1 chair is now the most stable conformation for all d-hexopyranose residues, irrespective of the linkage type and anomery, and of the position of the residue along the chain. The methylation of a d-hexopyranose leads to a systematic shift in the ring-inversion free energy ((4) C1 to (1) C4 ) by 7-8 kJ mol(-1), positive for the α-anomers and negative for the β-anomers, which is qualitatively compatible with the expected enhancement of the anomeric effect upon methylation at O1. The ring-inversion free energies for residues within chains are typically smaller in magnitude compared to those of the monomers, and correlate rather poorly with the latter. This suggests that the crowding of ring substituents upon chain formation alters the ring flexibility in a nonsystematic fashion. In general, the description of carbohydrate chains afforded by 56A6(CARBO_R) suggests a significant extent of ring flexibility, i.e., small but often non-negligible equilibrium populations of inverted chairs, and challenges the "textbook" picture of conformationally locked carbohydrate rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.