Abstract

In this work the crystal structure of the previously described orthorhombic polymorph of the coupling reagent Oxyma has been revised, corrected now as centrosymmetric and analyzed by means of DFT calculations. In the solid state the structure forms a network of H-bonds and self–assembled dimers that are held together by the formation of N···C π–hole interactions involving the C-atom of the imino group. The H-bonding and π–hole interactions observed in the solid state were rationalized using molecular electrostatic potential (MEP) surfaces, focusing on the H-bond donor-acceptor groups and the π-hole observed above and below the molecular plane. The interactions and their interplay have been characterized by using two methodologies based on the topology of the electron density, which are the quantum theory of “atom-in-molecules” (QTAIM) and the noncovalent interaction plot (NCIplot).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.