Abstract

The mechanism of the oxidation of cyclohexanone with an aqueous solution of hydrogen peroxide has been investigated. Experiments revealed the preliminary formation of an intermediate, identified as cyclohexylidene dioxirane, in equilibrium with the ketone, followed by formation of 1-hydroperoxycyclohexanol (Criegee adduct). Computational analysis with explicit inclusion of up to two water molecules rationalized the formation of the dioxirane intermediate via addition of the hydroperoxide anion to the ketone and revealed that this species is not involved in the formation of the Criegee adduct. The direct addition of hydrogen peroxide to the ketone is predicted to be favored over hydrolysis of the dioxirane, the latter in competition with ring opening to carbonyl oxide followed by hydration. However, dioxirane may account for the formation of the bis-hydroperoxide derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.