Abstract

Based on a suite of state-of-the-art high-resolution $N$-body simulations, we revisit the so-called halofit model (Smith et al. 2003) as an accurate fitting formula for the nonlinear matter power spectrum. While the halofit model has been frequently used as a standard cosmological tool to predict the nonlinear matter power spectrum in a universe dominated by cold dark matter, its precision has been limited by the low-resolution of $N$-body simulations used to determine the fitting parameters, suggesting the necessity of improved fitting formula at small scales for future cosmological studies. We run high-resolution $N$-body simulations for 16 cosmological models around the Wilkinson Microwave Anisotropy Probe (WMAP) best-fit cosmological parameters (1, 3, 5, and 7 year results), including dark energy models with a constant equation of state. The simulation results are used to re-calibrate the fitting parameters of the halofit model so as to reproduce small-scale power spectra of the $N$-body simulations, while keeping the precision at large scales. The revised fitting formula provides an accurate prediction of the nonlinear matter power spectrum in a wide range of wavenumber ($k \leq 30h$\,Mpc$^{-1}$) at redshifts $0 \leq z \leq 10$, with 5% precision for $k\leq1 h$ Mpc$^{-1}$ at $0 \leq z \leq 10$ and 10% for $1 \leq k\leq 10 h$ Mpc$^{-1} $ at $0 \leq z \leq 3$. We discuss the impact of the improved halofit model on weak lensing power spectra and correlation functions, and show that the improved model better reproduces ray-tracing simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.