Abstract

Anthelvencins A and B are pyrrolamide metabolites produced by Streptomyces venezuelae ATCC 14583 and 14585. Isolated in 1965, they were reported to exhibit anthelmintic and moderate antibacterial activities. In this study, we revise the structure of anthelvencin A and identify a third anthelvencin metabolite, bearing two N-methylated pyrrole groups, which we named anthelvencin C. We sequenced the genome of S. venezuelae ATCC 14583 and identified a gene cluster predicted to direct the biosynthesis of anthelvencins. Functional analysis of this gene cluster confirmed its involvement in anthelvencin biosynthesis and allowed us to propose a biosynthetic pathway for anthelvencins. In addition to a nonribosomal peptide synthetase (NRPS), the assembly of anthelvencins involves an enzyme from the ATP-grasp ligase family, Ant23. We propose that Ant23 uses a PCP-loaded 4-aminopyrrole-2-carboxylate as substrate. As observed for the biosynthesis of the other pyrrolamides congocidine (produced by Streptomyces ambofaciens ATCC 25877) and distamycin (produced by Streptomyces netropsis DSM 40846), the NRPS assembling anthelvencins is composed of stand-alone domains only. Such NRPSs, sometimes called type II NRPSs, are less studied than the classical multimodular NRPSs. Yet, they constitute an interesting model to study protein-protein interactions in NRPSs and are good candidates for combinatorial biosynthesis approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call