Abstract

SUMMARY The current M-anomaly geomagnetic polarity timescale (GPTS) is mainly based on the Hawaiian magnetic lineations in the Pacific Ocean. M-anomaly GPTS studies to date have relied on a small number of magnetic profiles, a situation that is not ideal because any one profile contains an uncertain amount of geologic ‘noise’ that perturbs the magnetic field signal. Compiling a polarity sequence from a larger array of magnetic profiles is desirable to provide greater consistency and repeatability. We present a new compilation of the M-anomaly GPTS constructed from polarity models derived from magnetic profiles crossing the three lineation sets (Hawaiian, Japanese and Phoenix) in the western Pacific. Polarity reversal boundary locations were estimated with a combination of inverse and forward modelling of the magnetic profiles. Separate GPTS were established for each of the three Pacific lineation sets, to allow examination of variability among the different lineation sets, and these were also combined to give a composite timescale. Owing to a paucity of reliable direct dates of the M-anomalies on ocean crust, the composite model was time calibrated with only two ages; one at each end of the sequence. These two dates are 125.0 Ma for the base of M0r and 155.7 Ma for the base of M26r. Relative polarity block widths from the three lineation sets are similar, indicating a consistent Pacific-wide spreading regime. The new GPTS model shows slightly different spacings of polarity blocks, as compared with previous GPTS, with less variation in block width. It appears that the greater polarity chron irregularity in older models is mostly an artifact of modelling a small number of magnetic profiles. The greater averaging of polarity chron boundaries in our model gives a GPTS that is statistically more robust than prior GPTS models and a superior foundation for Late Jurassic–Early Cretaceous geomagnetic and chronologic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.