Abstract
The linear ordering problem (LOP) is an $\mathcal{NP}$ -hard combinatorial optimization problem with a wide range of applications in economics, archaeology, the social sciences, scheduling, and biology. It has, however, drawn little attention compared to other closely related problems such as the quadratic assignment problem and the traveling salesman problem. Due to its computational complexity, it is essential in practice to develop solution approaches to rapidly search for solution of high-quality. In this paper we propose a new algorithm based on a greedy randomized adaptive search procedure (GRASP) to efficiently solve the LOP. The algorithm is integrated with a Path-Relinking (PR) procedure and a new local search scheme. We tested our implementation on the set of 49 real-world instances of input-output tables (LOLIB instances) proposed in Reinelt (Linear ordering library (LOLIB) 2002). In addition, we tested a set of 30 large randomly-generated instances proposed in Mitchell (Computational experience with an interior point cutting plane algorithm, Tech. rep., Mathematical Sciences, Rensellaer Polytechnic Institute, Troy, NY 12180-3590, USA 1997). Most of the LOLIB instances were solved to optimality within 0.87 seconds on average. The average gap for the randomly-generated instances was 0.0173% with an average running time of 21.98 seconds. The results indicate the efficiency and high-quality of the proposed heuristic procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.