Abstract

Forty-six strains of Malassezia spp. with atypical biochemical features were isolated from 366 fresh clinical isolates from human subjects and dogs. Isolates obtained in this study included 2 (4.7%) lipid-dependent M. pachydermatis isolates; 1 (2.4%) precipitate-producing and 6 (14.6%) non-polyethoxylated castor oil (Cremophor EL)-assimilating M. furfur isolates; and 37 (34.3%) M. slooffiae isolates that were esculin hydrolyzing, 17 (15.7%) that were non-tolerant of growth at 40 degrees C, and 2 (1.9%) that assimilated polyethoxylated castor oil. Although their colony morphologies and sizes were characteristic on CHROMagar Malassezia medium (CHROM), all strains of M. furfur developed large pale pink and wrinkled colonies, and all strains of M. slooffiae developed small (<1 mm) pale pink colonies on CHROM. These atypical strains were distinguishable by the appearance of their colonies grown on CHROM. Three clinically important Malassezia species, M. globosa, M. restricta, and M. furfur, were correctly identified by their biochemical characteristics and colony morphologies. The results presented here indicate that our proposed identification system will be useful as a routine tool for the identification of clinically important Malassezia species in clinical laboratories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.