Abstract

Abstract. The Narrow Angle Camera (NAC) on the Lunar Reconnaissance Orbiter provides direct imaging, at pixel scales of 0.5 to 1.0 meter, of anthropogenic equipment left on the Moon. We identified the descent stages of the lunar modules, central stations of the Apollo Lunar Surface Experiments Package, Laser Ranging Retroreflectors (LRRRs), and Lunar Roving Vehicles in each NAC image of the Apollo landing sites. The pixel coordinates of those objects were then converted to latitude and longitude coordinates using SPICE routines in the U.S. Geological Survey Integrated System for Imagers and Spectrometers. For images that contained an LRRR, pointing information was updated to match the well known LRRR coordinates. Final coordinates for each object are reported as averages from multiple images. NAC observations allow refinement of the locations of these objects and result in a more accurate geodetic referencing at these historic sites. Additionally, the anthropogenic coordinate analysis enables realistic error estimates for NAC derived coordinates for features anywhere on the Moon.

Highlights

  • The positions of the three Apollo Laser Ranging Retroreflectors (LRRRs), along with the retroreflectors on the two Soviet Lunokhod rovers, are known to centimeter-level accuracy (Williams, 1996, 2008)

  • The relative positions of the Apollo Lunar Surface Experiment Package (ALSEP) central stations at all six Apollo sites are known to 30 m accuracy from very long baseline interferometry (VLBI) experiments (King, 1976)

  • Previous work by Davies and Colvin in 2000 combined these two datasets, using ground-level image photogrammetry and the historic United States Geological Survey (USGS) landing site maps to determine the relative positions of the Apollo LRRRs, ALSEP central stations, lunar module descent stages (LM), along with almost fifty notable craters

Read more

Summary

Introduction

The positions of the three Apollo Laser Ranging Retroreflectors (LRRRs), along with the retroreflectors on the two Soviet Lunokhod rovers, are known to centimeter-level accuracy (Williams, 1996, 2008). The relative positions of the Apollo Lunar Surface Experiment Package (ALSEP) central stations at all six Apollo sites are known to 30 m accuracy from very long baseline interferometry (VLBI) experiments (King, 1976). Previous work by Davies and Colvin in 2000 combined these two datasets, using ground-level image photogrammetry and the historic United States Geological Survey (USGS) landing site maps to determine the relative positions of the Apollo LRRRs, ALSEP central stations, lunar module descent stages (LM), along with almost fifty notable craters. Due to well-constrained position and orientation information for the Lunar Reconnaissance Orbiter (LRO), NAC images are used to directly measure feature locations to high accuracy (±22 m). With the additional accuracy provided by an LRRR within an image, we can measure the locations of human artifacts to an even higher level of confidence (±2m)

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call