Abstract

ABSTRACTAim: One of the most challenging research microsurgical techniques is the mouse kidney transplant however, very few laboratories have made use of this important model due to its difficulty. One of the main obstacles to utilizing this procedure is the high incidence of post-operative arterial thrombosis. We believe this is caused by the path in which blood is required to flow from the recipient abdominal aorta, via the donor recipient aorta and on into the renal artery creating a tortuous route and areas of turbulence, which are prone to thrombus formation and failure of the graft. Methods: We describe revised methods of donor artery recovery, whereby the traditional transection of the donor aorta is replaced with a heel and toe cuff, which is created by dividing the donor abdominal aorta obliquely across the face of the renal arterial ostium, which then provides for an arterial end-to-side anastomosis of a scale similar to that used for the heterotopic heart model. This technique produces an anastomosis that facilitates free blood flow from the recipient abdominal aorta at less than 90° thereby reducing the likelihood of thrombus formation. Results: Utilizing this new technique the incidence of arterial thrombosis has decreased from 35% to 0% (n = 20 and 24, respectively) with no change in ischemia times. Conclusion: We describe a revised method of performing the arterial anastomosis during mouse kidney transplantation, which facilitates improved fluid dynamics by straightening the flow path for blood to the graft resulting in significantly reduced thrombus formation, excellent graft function, histology, and post-transplant survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.