Abstract

Nitrogen-doped graphene (N-doped Graphene; includes N-Gr and N-rGO), emerges as an interesting alternative for the development of new anodic materials for the next generation of lithium-ion batteries (LIBs). Due to their characteristics, they can be used both as active materials and in combination with other materials for the formation of composites. As a consequence of the N-Gr synthesis methodology, the physicochemical and structural properties are variable, depending on the number of layers, nitrogen percentage and configuration in the doping product, the presence of oxygenated functional groups, the electroactive area, and the 2D structure or 3D of the material, among others. These properties are closely related to its electrochemical performance, affecting the number of active sites for lithiation, lithium diffusion rate and pathways through a battery system, charge transfer resistance, pseudo capacitive contribution, mechanical stability, among others. In this review, we comprehensively analyze the different characteristics of N-Gr based materials and their relationship with their performance as anodes in LIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.