Abstract
The electrification of heating, cooling, and transportation to reach decarbonization targets calls for a rapid expansion of renewable technologies. Due to their decentral and intermittent nature, these technologies require robust planning that considers non-technical constraints and flexibility options to be integrated effectively. Energy system models (ESMs) are frequently used to support decision-makers in this planning process. In this study, 116 case studies of local, integrated ESMs are systematically reviewed to identify best-practice approaches to model flexibility and address non-technical constraints. Within the sample, storage systems and sector coupling are the most common types of flexibility. Sector coupling with the transportation sector is rarely considered, specifically with electric vehicles even though they could be used for smart charging or vehicle-to-grid operation. Social aspects are generally either completely neglected or modeled exogenously. Lacking actor heterogeneity, which can lead to unstable results in optimization models, can be addressed through building-level information. A strong emphasis on cost is found and while emissions are also frequently reported, additional metrics such as imports or the share of renewable generation are nearly entirely absent. To guide future modeling, the paper concludes with a roadmap highlighting flexibility and robustness options that either represent low-hanging fruit or have a large impact on results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.