Abstract

In recent years several authors have derived correlations between gamma-ray burst (GRB) spectral peak energy (E(sub peak)) and either isotropic-equivalent radiated energy (E(sub iso)) or peak luminosity (L(sub iso)). Since these relationships are controversial, but could provide redshift estimators, it is important to determine whether bursts detected by Swift exhibit the same correlations. Swift has greatly added to the number of GRBs for which redshifts are known and hence E(sub iso) and L(sub iso) could be calculated. However, for most bursts it is not possible to adequately constrain E(sub peak) with Swift data alone since most GRBs have E(sub peak) above the energy range (15-50 keV) of the Swift Burst Alert Telescope (BAT). Therefore we have analyzed the spectra of 78 bursts (31 with redshift) which were detected by both Swift/BAT and the Suzaku Wide-band All-sky Monitor (WAM), which covers the energy range 50-5000 keV. For most bursts in this sample we can precisely determine E(sub peak) and for bursts with known redshift we can compare how the E(sub peak) relations for the Swift/Suzaku sample compare to earlier published results. Keywords: gamma rays: bursts

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.