Abstract

There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS) in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism) but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli-type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564) acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species.

Highlights

  • There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study

  • In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues

  • The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species

Read more

Summary

Introduction

There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. The respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.