Abstract
Background. The oesophageal microbiome is thought to contribute to the pathogenesis of oesophageal cancer. However, investigations using culture and molecular barcodes have provided only a low-resolution view of this important microbial community. We therefore exploited culturomics and metagenomic binning to generate a catalogue of reference genomes from the healthy human oesophageal microbiome, alongside a comparison set from saliva.Results. Twenty-two distinct colonial morphotypes from healthy oesophageal samples were genome-sequenced. These fell into twelve species clusters, eleven of which represented previously defined species. Two isolates belonged to a novel species, which we have named Rothia gullae. We performed metagenomic binning of reads generated from UK samples from this study alongside reads generated from Australian samples in a recent study. Metagenomic binning generated 136 medium or high-quality metagenome-assembled genomes (MAGs). MAGs were assigned to 56 species clusters, eight representing novel Candidatus species, which we have named Ca.Granulicatella gullae, Ca. Streptococcus gullae, Ca. Nanosynbacter quadramensis, Ca. Nanosynbacter gullae, Ca.Nanosynbacter colneyensis, Ca. Nanosynbacter norwichensis, Ca. Nanosynococcus oralis and Ca. Haemophilus gullae. Five of these novel species belong to the recently described phylum Patescibacteria. Although members of the Patescibacteria are known to inhabit the oral cavity, this is the first report of their presence in the oesophagus. Eighteen of the metagenomic species were, until recently, identified only by hard-to-remember alphanumeric placeholder designations. Here we illustrate the utility of a set of recently published arbitrary Latinate species names in providing user-friendly taxonomic labels for microbiome analyses.Our non-redundant species catalogue contained 63 species derived from cultured isolates or MAGs. Mapping revealed that these species account for around half of the sequences in the oesophageal and saliva metagenomes. Although no species was present in all oesophageal samples, 60 species occurred in at least one oesophageal metagenome from either study, with 50 identified in both cohorts.Conclusions. Recovery of genomes and discovery of new species represents an important step forward in our understanding of the oesophageal microbiome. The genes and genomes that we have released into the public domain will provide a base line for future comparative, mechanistic and intervention studies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.