Abstract

The sirtuin family of intracellular enzymes are able to catalyze a unique β-nicotinamide adenine dinucleotide (β-NAD+)-dependent Nε-acyl-lysine deacylation reaction on histone and non-histone protein substrates. Since 2000, the sirtuin family members have been identified in both prokaryotes and eukaryotes; tremendous accomplishments have also been achieved on the mechanistic and functional (pharmacological) understanding of the sirtuin-catalyzed deacylation reaction. Among the eukaryotic organisms, past research has been focused more on the yeast and mammalian sirtuins than on the plant sirtuins, however, the very presence of sirtuins in various plant species and the functional studies on plant sirtuins published thus far attest to the importance of this particular subfamily of eukaryotic sirtuins in regulating the growth and development of plants and their responses to biotic and abiotic stresses. In this review, an integrated and updated account will be presented on the biochemical, cellular, and functional profiles of all the plant sirtuins identified thus far. It is hoped that this article will also set a stage for expanded efforts in the identification, characterization, and functional interrogation of plant sirtuins; and the development and exploration of their chemical modulators (activators and inhibitors) in plant research and agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.