Abstract

High entropy alloys (HEAs) have been developed as a new class of structural materials that consist of multicomponent elements with an approximately equiatomic ratio for increasing the mixing entropy to stabilize the solid solution phase. HEA for biomedical applications (BioHEA) was first developed in Japan; HEA comprising nonbiotoxic elements was specifically designed, demonstrating excellent mechanical properties and biocompatibility. However, elemental segregation, often observed in BioHEAs, hinders the inherent functions derived from high entropy effects and solid solution hardening. In this review article, elemental homogenization and functionalization of BioHEAs utilized by ultra-rapid cooling via laser-powder bed fusion and the characteristics of these BioHEAs, especially focusing on their excellent properties for biomedical applications, are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.