Abstract
We present an overview of quantum noise in gravitational-wave interferometers. Current gravitational-wave detectors are modified variants of a Michelson interferometer and the quantum noise limits are strongly influenced by the optical configuration of the interferometer. We describe recent developments in the treatment of quantum noise in the complex interferometers of present-day and future gravitational-wave detectors and explore prospects for beating the standard quantum limit by use of both injected and ponderomotive squeezing in future interferometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Optics B: Quantum and Semiclassical Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.