Abstract

The exhaust gas from an internal combustion engine contains approximately 30% of the thermal energy of combustion. Waste heat recovery (WHR) systems aim to reclaim a proportion of this energy in a bottoming thermodynamic cycle to raise the overall system thermal efficiency. One of promising heat recovery approaches is to employ an inverted Brayton cycle (IBC) immediately downstream of the primary cycle. However, it is a little-studied approach as a potential exhaust-gas heat-recovery system, especially when applied to small automotive power-plants.The experiments of the IBC prototype were conducted in the gas stand. The correlated IBC model can be utilized for the further development of the IBC system. Researchers were reviewed core paper on Inverted Brayton Cycles (IBC) and concluded that there were possibility of heat recovery system in that for changing different mechanical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.