Abstract

Although the water radiolysis, decomposition of water by radiation, is a well-known phenomenon the exact mechanism is not well characterized especially for severe accidents. The author first reviewed the water radiolysis phenomena in LWRs during normal operation to severe accidents (e.g., TMI- and Chernobyl accidents) and performed a scoping estimation of the amount of radiological hydrogen generation, accumulation and release for the Fukushima Daiichi accident. The estimation incorporates the decay heat curve after a reactor trip combined with G-values. As much as 450 cubic meters-STP of accumulated hydrogen gas is estimated to be located inside the PCV just prior to the hydrogen explosion which occurred a day after the reactor trip in Unit 1. When a set of radiological chain reactions are incorporated the resultant reverse reactions substantially reduce the hydrogen generation, even when removal of molecular products (i.e., oxygen and hydrogen) is assumed stripped rapidly from boiling water through bubbles. Even in the most favorable configuration a typical amount of hydrogen gas reduces to only several tens of cubic meters. Finally, the author tested a new mechanism, “radiation-induced electrolysis,” which had been applied to his corrosion studies for last several years. His theory has been verified with the published in-pile test data, although he has never tried to apply this to his severe accident study. The predicted results indicated that the total inventory of hydrogen gas inside RPV may reach as much as 1000 cubic meters in just 3 hours during the SBO due to a high decay heat soon after the reactor trip through this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call